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Abstract. The Feynman model Hamiltonian for a polaron is generalized to the case of a 
bipolamn in an external magnetic field. The resulting Hamiltonim is exactly diagonalized and 
lhe eigenfrequencies and eigenvectors are found. Numerical results are given as function of the 
magnetic field and limiting results are obtained in the low- and high-magnetic field limit. The 
time rvolution of the electron position cwrdinates is derived from which we obtain the optical 
8bsorption. 

1. Introduction 

Conduction electrons in materials repel each other via the screened Coulomb potential, 
but in very ionic crystals the electron-phonon coupling can be strong enough to overcome 
the Coulomb repulsion and create a stable electron (or hole) pair. This is the so-called 
bipolaron problem, the concept of which was introduced by Pekar [l]. He suggested that 
when coupled to a cloud of virtual phonons in a polar crystal, two electrons can form a 
bound state in spite of the Coulomb repulsion between the two electrons if the attractive 
interaction due to the electron-phonon coupling is sufficiently large. The latter condition 
is quite severe and can only he satisfied in very polar materials. Recently, the interest in 
bipolarons [Z, 3, 4, 5, 6. 7, 81 in materials with strong electron-phonon interaction has 
revived due to the discovery of high-temperature superconductors. In the present paper, 
we limit ourselves to the case of large hipolarons which are mobile and consequently 
can contribute to conduction. The theory of large bipolarons using Feynmq ‘path-integral 
techniques was presented by Verbist et al [6] in the absence of any external magnetic 
field. They showed that bipolaron formation is easier in two dimensions (2D) than in three 
dimensions (in 2D: cu, rr 2.9 and in 3D: a, 6.9). 

Feynman’s path-integral approach to the polaron problem has been very successful to 
describe the static (i.e. thermodynamic) and dynamic properties of polarons for arbitrary 
electron-phonon coupling stren-gh [9]. This approach is based on a cumulant expansion 
in the difference between the actual action and a trial action. The latter is chosen to be 
a quadratic action such that all path-integrals over it can be done exactly. Corresponding 
to the Feynman trial action there exists an equivalent Feynman model Hamiltonian which 
contains extra degrees of freedom. Eliminating these degrees of freedom within a path- 
integral approach leads to the Feynman trial action [IO]. 

The purpose of the present paper is to generalize Feynman’s polaron theory [I I]  to the 
case of a bipolaron in the presence of an external magnetic field. In order to do this, we first 
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study the generalized Feynman bipolaron model Hamiltonian. In the present paper we limit 
ourselves to the exact diagonalization of the bipolaron model Hamiltonian and the study of 
the magnetic field dependence of its different properties. A magnetic field in the z-direction 
couples the x and y motion of the bipolaron and as a consequence we must deal with a 
non-separable problem of 16 degrees of freedom. The diagonalization of it turns out to be 
technical rather involved. 

The outline of the present paper is as follows. We start in section 2 with a discussion 
of the problem, present a generalization of Feynman's polaron theory to bipolarons. The 
eigenfrequencies are calculated in section 3. Numerical results are presented and asymptotic 
results for small and large magnetic fields are derived. The time evolution of the electron 
coordinates are given in section 4. In section 5, the optical absorption is calculated for the 
bipolaron model Hamiltonian. Our conclusions are presented in section 6. 
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2. Hamiltonian 

The Hamiltonian that describes two electrons interacting with the vibrational modes of a 
crystal and a constant uniform magnetic field is given by 

H = He + Hph + HI + V(Ti - T2) (1) 

with 

the Hamiltonian for two free electrons in a magnetic field B = rot d. with band mass m. 
electric charge -e, and conjugate coordinates of the jth electron ( ~ j , p j ) .  

H p h  = c f i w k ( a : a k  + $1 (3) 
k 

is the Hamiltonian describing the bulk phonons, where ak ( a k )  is the creation (annihilation) 
operator for a phonon with wave vector k and frequency Wk. The interaction between the 
electrons and phonons is described by 

where V k  is the electron-phonon interaction coefficient and U(T) is the repulsive potential 
between the electrons. In the following the magnetic field is taken along the z axis, and the 
vector potential is written in the symmetrical Coulomb gauge 

B d. - - ( - y j ,  ~ j .  0 )  
I- 2 (5 )  

For longitudinal-optical (Lo) phonon scattering one usually assumes dispersionless phonons 
O k  = wL0, with wL0 the frequency of the longitudinal optical phonons. The interaction 
coefficient in 3D is given by vk = i ( f i 0 ~ 0 / k ) ( 4 ~ c y / V ) ~ / ~ ( f i / 2 m w ' 0 ) ~ / ~ ,  where cy = 
( 1 /Awro) (e2 /2€~) (2mw,~~h) ' /2  is the electron-Lo phonon coupling constant where ee is 
the effective dielectric constant defined in terms of the high frequency dielectric constant 
cm and the static dielectric constant €0 as ce-' = 6 m -I - EO-'.  The electron-phonon 
coupling constant 01. which measures the attractive part, and the strength of the Coulomb 
repulsion U ( r l  -TZ)  = V/lrl -TZ]  are two relevant parameters that determine the bipolaron 
formation. 



The generalized F e y n m  bipolaron model 1295 

The original idea of the Feynman polaron model is to replace the virtual phonon cloud 
surrounding the electron by a fictitious particle which is bound to the electron through 
a spring [IO]. The mass of the fictitious particle and the coupling (i.e. spring constant) 
between the electron and the fictitious particle are a measure for the effective electron- 
phonon interaction. In a bipolaron system we have two electrons each with their own 
phonon cloud and consequently the Feynman bipolaron model will consist of four particles, 
described by the following Hamiltonian 

Pz K 2 

HF =E [ & (pj + 3) + --L+ -(r, - Rj) 
C 2M 2 j=1 

(6) 
K' K 
2 2 

+- [(TI - R2)Z + (RI - r*)2] - - (r, - T2)2. 

In analogy with the Feynman model for a free polaron, each electron interacts quadratically 
with a fictitious particle with conjugate coordinates (Rj, Pj) of mass M and oscillator 
strength K .  Each of the electrons interact with the fictitious particle (phonon cloud) of the 
other electron with oscillator strength K' .  For the case of harmonic phonons, as is usually 
assumed in polaron physics, the polarization clouds of overlapping polarons are additive 
and as a consequence there is no direct interaction between the fictitious paitidles (RI, R2). 

The Coulomb repulsion between the electrons is approximated by a quadratic repulsion with 
strength K. Consequently, the model is determined by the four parameters M ,  K, K', and K .  
which is illustrated in figure 1. In this quadratic model the motion along the magnetic field 
does not couple with the motion perpendicular to the magnetic field. For motion along the 
magnetic field, the problem is equivalent to the one-dimensional (ID) Feynman bipolaron 
model Hamiltonian in the absence of any magnetic field which was diagonalized in [6]. 
Therefore we limit ourselves to the electron motion perpendicular to the magnetic field. 

I 
I 

K I  
I 

I 
I 

I \ I 

Figure 1. Graphical representation of the bipolaron model. 

3. The eigenfrequencies 

From now on we will use units such that h = m = OLO = 1. The Hamiltonian HF in 
two dimensions (ZD) has sixteen degrees of freedom, and its diagonalization is equivalent 
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to the diagonalization of a 16 x 16 matrix. An alternative approach [ l l ]  is to consider the 
equations of motion 
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(7a) 

(7b) 

which leads to a set of sixteen linear first-order differential equations. The solution of this 
set of equations is rather lengthy. Therefore only a brief outline of the calculation will 
be given. After eliminating the momentum variables the sixteen coupled first-order linear 
differential equations reduce to eight coupled second-order linear differential equations. 
Taking the Laplace transform of these equations results in eight coupled non-homogeneous 
algebraic equations, which in principle can be solved analytically. The eigenfrequencies of 
the system are given by the zeros of the determinant of the homogeneous problem 

a HF p. - -- 
I -  aRj 

a Hf 
’- ar, P’ 

a Hf +.-- . aHF 
apj I -  a q  R. - - 

s Z + q  sw, Y3 0 -Y1 0 -Y2 0 
-soc s 2 + q  0 n 0 -Yl 0 -Y2 
n 0 s 2 + q  sw, -y2 0 -n 0 
0 y, -so, s z + q  0 -Y2 0 -Y1 

-82 0 s 2 + <  0 0 0 -81 0 
0 -81 0 -82 0 s2+< 0 0 

-82 0 -81 0 0 0 s*+< Q 
0 -82 0 ~ -81 0 0 0 s2+< 

(8) detA = 

where q = y~ + ~2 - M ( y ~  = s / m .  y2 = d / m ,  y, = K / m ) ,  5 = SI + SZ (SI = K I M ,  
S2 = K ’ / M )  and w, = e B / m c  is the cyclotron frequency of a free electron in a magnetic 
field. In equation (8) ‘s’ is the Laplace variable and the condition detA(s2) = 0 results in 
the algebraic equation 
sz { 4 ( S Z  - I J y  + o,2(s2 - lJ2)2} 

x [[s‘ + ( ~ y ,  - u2)s2 +e4 - ~ y ~ v ~ ] ~  - s2w:(s2 - w2)’) = o (9) 
which leads to the set of eight eigenfiequencies: wj = j = 1, . . . , 7  and 08 = 0. In 
equation (9) we defined U’ = yl + y2 + 61 +8z = ( K  + K ’ ) / W ,  U’ = SI +Sz = ( K  + K ‘ ) / M ,  
and Q4 = z(Y182 + ~ 2 8 1 )  = ~ K K ’ ( ~ M ) - ’ ,  where 

The polaron limit is obtained by decoupling the two electrons from each other, i.e. 
K = K‘ = 0 or equivalently by substituting yz = y3 = 62 = 0 in equation (9). This results 
in the equation 

= m-I + M-I. 

(10) 2 2  2 2 2  2 s (s - yl - 81) -o,(s -81) = o  
for the eigenfrequencies which was first obtained in [ll]. Next we consider the zero- 
magnetic field limit of equation (9) and find 

(11) s2 [ -s2(s2 - U’)’} {[s4 + ( 2 . ~ 3  - u2)s2 + e4 - Z ~ V  2 2  1 ] - 0  - 
which results in the four eigenfrequencies: s = 0 and 

2 ( K  + K’) = U , M + m  f i 2  - - 
M m  

as obtained in [GI. 
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Figure 2. The eigenfrequencies of the bipolaron model for the p m e t e n :  K = 0.269, 
c' = 0.154. K = 0 and M = 0.369 as a fuunction of the magnetic field. We also show 
uc = eB/mc and 0,' = o J ( m  + M) by the dotted lines. 

Equation (9)  was solved numerically. In figure 2 the eigenfrequencies wj are depicted 
as a function of the magnetic field for K = 0.269, K' = 0.154, K = 0 and M = 0.369, 
which are the parameters for a weak coupling polaron in the absence of any Coulomb 
repulsion. The Feynman parameters for this case are U = [ ( K  + K ' ) ( I  + 1/M)J1/2 = 1.25 
and w = [ ( K  + K ' ) / M ] ' / ~  = 1.07. The equivalent results for a strongly coupled polaron 
are shown in figure 3.  We took the following parameters: K = 269.68, K' = 154.32, 
K = 0 and for the mass of the fictitious particle M = 369.01 which are the parameters 
obtained in [6]  for 01 = ~12 in the absence of an external magnetic field. The corresponding 
one-polaron Feynman parameters are U = 20.61 and w = 1.07. The discussion of the 
physical significance of the different roots will be given while discussing the different 
limiting behaviours. 

In the following we will derive explicit analytic results for the eigenfrequencies. for 
a restrictive range of 0,-values. We consider K = 0, in order to make the expressions 
sufficiently attractive. First, we will analyse the small magnetic field limit 0, << 1 where 
we obtained the following results 
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Figuref (a) The eigenfrequencies 01,2,4,6,,, and (b) the eigcnfrequencies q.3 .4 .5 .  as n Function 
of the magnetic field for: Y = 269.68, K' .= 154.32, K = 0 and M = 369.01 which carresponds 
to the strongly coupled bipolaron system. 

where 0," = wcu2/u2 = m,m/(m + M) is the cyclotron frequency for a particle with mass 
m + M which is equal to the polaron mass, = (U' It q ' m ) / 2  is the square of the 
frequencies given by equation (12b) for K = 0, and S2; = u2(uz- ~ ~ ) ~ & q ' ~ [ ( u ~ -  
w2)2 - e4] +e4(4uZ -I?). The above,!imiting behaviour is clearly apparent in figures 2 and 
3. 01 is the cyclotron motion of a polaron (=electron +frcritiouspar!icle) with mass m + M  
in a magnetic field, or in the present case of a bipolaron with charge 2e and mass 2(m+M). 
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At zero magnetic field, w2 and w3 become equal to the frequency U for relative motion of 
the electrons and the fictitious particles in the Feynman polaron model which for non-zero 
magnetic field splits into two, for clockwise and counter clockwise rotational motion. The 
frequencies 04.5 and 06.7 are pure bipolaron modes which equals equation (126) in the zero 
magnetic field limit. These internal vibrational modes of the bipolaron split into two when 
UJ, # 0 for the same reason as mentioned for 02.3. 

For large magnetic fields w, >> 1 one finds the following asymptotic expansions 

u2- w 2  e4 1 
w4.7 = U* (T - -) 2 w 2  0, - 

u2(u4 + 5u4) + 2u2e4(e4 - 3w4)(2u4 - 3 p 4 )  1 
f s u 3  - + O ( $ )  4 (14~)  

Two of the frequencies (03 and w5) reache the free electron cyclotron frequency (we) from 
above when w, + 00. In this limit the electrons move so fast that the fictitious particles 
cannot follow the electron motion and the eigenmode of a free electron in a magnetic 
field is recovered. ~ Several of the other eigenfrequencies, i.e. q 2  and q7. approach 
U = J ( K  + K ' ) / M  which is the eigenfrequency of the fictitious particle connected to a 
fixed electron. i.e. m + CO. 06 is the frequency of a particle moving counter clockwise in 
a magnetic field, which is similar to the behaviour of skipping orbits in a quantum dot. 

4. The eigenvectors 

In the process of diagonalization equation (6), two canonically conjugate constants of motion 
enter 

which satisfy the commutation relation [nl, 112] = -i/20,. They are related to the position 
of the classical orbit center. The explicit time evolution of the electron position coordinates 
are found to be 

7 

x l ( t )  = n, + i cdj(Cjei'J' + C,!e-i'f'), (164 
j-1 
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where Cj ,  (C,!) are annihilation (creation) operators for quantized motion of the internal 
degrees of freedom and which satisfy [C j .  C/] = 8j.l. Similar expressions are obtained for 
the coordinates of the second electron. 

For the actual path-integral calculation [6] of the bipolaron energy at zero magnetic 
field with the trial action obtained from the model Hamiltonian (6). it turned out that taking 
K = 0 does not alter the results appreciably. Therefore, in the following we will take 
K = 0 in order to keep the formulas tractable. The coefficients dj are given by 

W B da Casta and F M Peeters 

with 
a, = -2(2 + M)U’ 

a3 = -4(1 + M)’u6 - 2Mw:u4 
a4 = (1 + 3M + 3M2 - M 3 ) v 8  + Mw:u6 

a2 = (6 + 7 M  + M2)v4 + M ~ : u ’  

a s = - 4 ( 1 + M ) u 2 - 2 w , ”  
a6 = (1 - M)2v4 +by 
and 

d? = j = 4 ,  ..., 7 
Ms~’” - 2M(2  + M ) U ~ S ) ’  + bl$ + bz$ + b3.j + b4sj” + bs 

4sjM(-4s,b + b64 + 67s; 4- bs)2 I 

(17b) 
with 

bz = 2M(wZ - 2Mu2)e4 - 4 ( 1 +  2M2 + M3)v6 - 2M2u40: 
63 = -(3M2 + 8M + 26)e8/8 + (M(5  + 7 M  - 4M2)uJ + 5Mw’o~ + 13/4)e4 

b4 = -Me4u2(Me + 4v2w:) 
bs = M v 8  + M e S ( M v 4  - e4) 

b7 = -4e4 - 2M(2 + M)u4 - 4v20: 
bs = 2Me4v2 + v4. 
For future purposes we give the limiting behaviour of these coefficients dj for w, << 1 and 
w, + CO. 

bl = M e 4  + M ( 6 +  7 M  + M2)w4 + M’U’U: 

+M2(3  + M 2  f 3M3)us + MZo:u6 

bg = 6(1 + M)w2 + 3 4  

In the small magnetic field limit the coefficients dj are given by 

In the asymptotic limit of large magnetic fields the expansion coefficients dj are given 
by 

MvZ 1 
d: = -- 

16sj of 
j = l ,  ..., 3 
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5. Optical absorption 

In order to investigate the importance of the different eigenfrequencies to the physical 
properties of the bipolaron we have calculated the velocity auto-correlation function. The 
real part of the latter is a measure for the optical absorption spectrum. The oscillator strength 
of the different peaks is a measure of the contribution of the different frequencies to the total 
optical absorption. In fact, it was shown by Feynman et a1 [12] that the optical absorption 
spectrum of polarons calculated within the path-integral approach of Feynman [lo] consists 
of two parts. The first part comes from the Feynman polaron model itself which leads to 
the zeroth order approximation to the spectrum. The same holds still for the present case 
of bipolarons. The second part results from the difference between the bipolaron and the 
trial action. 

0.5 I 1 I I I 

0.4 

0.3 
I-- 

0.2 

0.1 

0 

W J ( 4 . 0  

Figure 4. The oscillator strength 
eolrpling case of figure 2. 

as function of the magnetic field corresponding to the weak 

Within linear response theory [13, 141 the velocity auto-correlation function relevant for 
cyclotron resonance absorption (i.e. the Faraday active mode) is given by 

u(0 )  = -- e* /"mdlei*f([(il(t) + ijq(r))+, ( i l~ (0)  +ipl(o))l) (7.0) 
W O  

which is the Fourier transform of the (complex) velocity auto-correlation function. For the 
bipolaron model Hamiltonian in the presence of an external magnetic field we can easily 
calculate this quantity by making use of the time evolution, equations (16a) and (16b), 
for the electron coordinates. The present model  is^ non-dispersive and consequently the 
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magneto-optical absorption spectrum consists of a series of 8-functions 

each with an oscillator strength T,  =- 2sjd:. The oscillator stren*$h satisfy the sum rule 
E;=, = 1. Notice that we can easily broaden these &functions into Lorentzians by 
introducing an ad hoc broadening. This can be done by replacing OJ in equation (20) by 
w + i r .  

The oscillator strength corresponding to the different eigenmodes are depicted in figure 4 
for the weak coupling case correspondig to figure 2, and in figure 5 for the strongly coupled 
polaron system corresponding to figure 3. Notice that for the strong coupling case four 
frequencies cany almost all the oscillator strength. The four frequencies (see figure 3(b)) 
are well represented by two-fold degenerate eigenfrequencies. In the strong coupling limit 
the frequencies w2 and 03 are obtained from the first part of the RMS of equation (9) in 
the limit M -+ 00, or equivalently U + 0. This leads to 

which is valid for all OJ, in the region where T, is not too small. For the corresponding 
oscillator strength we obtain from equation (17a) 

Note that in the o, -+ 0 limit we have 02.3 = u*oC/2 for v = 0 which gives us T2.3 = 1/4 
and which agrees with figure 5(b). 

6. Conclusion 

In summary, we studied the properties of a system of two electrons interacting with each 
other by the direct Coulomb force and by optical phonons in the presence of an external 
magnetic field. In the present paper we limited ourselves to the study of the Feynman 
bipolaron model in which the different forces are replaced by springs and the virtual phonon 
field by a fictitious particle. The resulting Hamiltonian was exactly diagonalized. The 
diagonalized form is given by 

where the different frequencies are determined by the solution of the non-linear algebrqic 
equation (9). The energy levels are consequently given by 

in which a bipolaron state is now characterized by the 7 discrete quantum numbers 
( E l , .  . ., d. 

After the exact diagonalization of this model bipolaron Hamiltonian we also obtained 
the time evolution of the electron coordinates which is necessary in order to calculate 
the electron density-density auto-correlation function. The latter is a basic quantity in the 
calculation of the bipolaron thermodynamic properties and dynamical quantities. These 
calculations, within the Feynman path-integral approach, is left for future work. 
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Figure 5. The oscillator slrengths T1.6.7 nnd T2.3.4.5 as function of the magnetic field for the 
strong coupling c3se corresponding to the eigenfrequencies oj of figures 3(a) and 3@). 
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