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Abstract. The Feynman model Hamiltonian for a polaron is generalized to the case of a
bipolaron in an external magnetic field. The resulting Hamiltonian is exactly diagonalized and
the eigenfrequencies and eigenvectors are found. Numerical results are given as function of the
magnetic field and limiting results are obtained in the low- and high-magnetic field Yimit, The
time evolution of the electron position coordinates is derived from which we obtain the optical
absorption.

1. Introduction

Conduction electrons in materials repel each other via the screened Coulomb potential,
but in very ionic crystals the electron—phonon coupling can be strong enough te overcome
the Coulomb repulsion and create a stable electron (or hole) pair. This is the so-called
Bipolaron problem, the concept of which was introduced by Pekar [1]. He suggested that
when coupled to a cloud of virtual phonons in a polar crystal, two electrons can form a
bound state in spite of the Coulomb repulsion between the two electrons if the attractive
interaction due to the electron~phonon coupling is sufficiently large. The latter condition
is quite severe and can only be satisfied in very polar materials. Recently, the interest in
bipolarons [2, 3, 4, 5, 6. 7, 8] in materials with strong electron—phonon interaction has
revived due to the discovery of high-temperature superconductors. In the present paper,
we limit ourselves to the case of large bipolarons which are mobile and consequently
can contribute to conduction. The theory of large bipolarons using Feynman path-integral
techniques was presented by Verbist et al [6] in the absence of any external magnetic
field. They showed that bipolaron formation is easier in two dimensions (2D) than in three
dimensions (in 2D: o, =~ 2.9 and in 3D; ¢, =~ 6.9).

Feynman’s path-integral approach to the polaron problem has been very successful to
describe the static (i.e. thermodynamic) and dynamic properties of polarons for arbitrary
electron—phonon coupling strength [9]. This approach is based on a cumulant expansion
in the difference batween the actual action and a trial action. The latter is chosen to be
a quadratic action such that all path-integrals over it can be done exactly. Corresponding
to the Feynman trial action there exists an equivalent Feynman model Hamiltoniar which
contains exira degrees of freedom. Eliminating these degrees of freedom within a path-
integral approach leads to the Feynman trial action [10].

The purpose of the present paper is to generalize Feynman’s polaron theory [11] to the
case of a bipolaron in the presence of an external magnetic feld. In order to do this, we first
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study the generalized Feynman bipolaron model Hamiltonian. In the present paper we limit
ourselves to the exact diagonalization of the bipolaron model Hamiltonian and the study of
the magnetic field dependence of its different properties. A magnetic field in the z-direction
couples the x and y motion of the bipolaron and as a consequence we must deal with a
non-separable problem of 16 degrees of freedom. The diagonalization of it turns out to be
technical rather involved.

The outline of the present paper is as follows. 'We start in section 2 with a discussion
of the problem, present a generalization of Feynman’s polaron theory to bipolarons. The
eigenfrequencies are calculated in section 3. Numerical results are presented and asymptotic
results for small and large magnetic fields are derived. The time evolution of the electron
coordinates are given in section 4. In section 5, the optical absorption is calculated for the
bipolaron model Hamiltonian. QOur conclusions are presented in section 6.

2. Hamiltonian

The Hamiltonian that describes two electrons interacting with the vibrational modes of a
crystal and a constant uniform magnetic field is given by

H=H,+Hn+ H+Ur —1) (1)
with
1 2 eA_,' 2
Hem%g[w+—c—] @

the Hamiltonian for two free electrons in a magnetic field B = rot A, with band mass m,
electric charge —e, and conjugate coordinates of the jth electron (r;. p;).

Hop =Y hox(alag + 1) ©)
k

is the Hamiltonian describing the bulk phonons, where a,‘; (ax) is the creation (annihilation)
operator for a phonon with wave vector k and frequency wg. The interaction between the
electrons and phonons is described by

2
Hi= 303 (Viawe™” + Viale ™) @
=1 k

where Vi is the electron—phonon interaction coefficient and U(r) is the repulsive potential
between the electrons. In the following the magnetic field is taken along the z axis, and the
vector potential is written in the symmetrical Coulomb gauge

B
Aj = E (—yj, X;. 0) - (5)

For longitudinal-optical (L0} phonen scattering one usually assumes dispersionless phonons
wr = wig, With wo the frequency of the longitudinal optical phonons. The interaction
coefficient in 3D is given by Vi = i(hwro/k)(dma/ V)2 (h/2mw o)/*, where ¢ =
{1/hwro)(e*/2e.)(2mwro/R)'? is the electron-LO phonon coupling constant where ¢, is
the effective dielectric constant defined in terms of the high frequency dielectric constant
€ and the static dielectric constant € as ¢~} = €x~! — ¢y~!. The electron-phonon
coupling constant «, which measures the attractive part, and the strength of the Coulomb
repulsion U/ (7| —r3) = U/|r1 —r,] are two relevant parameters that determine the bipolaron
formation.
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The original idea of the Feynman polaron model is to replace the virtual phonon cloud
surrounding the electron by a fictitious particle which is bound to the electron through
a spring [10]. The mass of the fictitious particle and the coupling (i.e. spring constant)
between the electron and the fictitious particle are a measure for the effective electron—
phonen interaction. In a bipolaron system we have two electrons each with their own
phonon cloud and consequently the Feynman bipolaron model will consist of four particles,
described by the following Hamiltonian

2 1 A PZ
HF:Z[z (p_."l'i__) +2_ﬂ2+2( Rj)z:\

Jj=1
&’ 2 n_K 2
o [(r1 — Ro)* + (R; — m2)?] — ‘2—(?‘1 — 1) (6)

In analogy with the Feynman model for a free polaron, each electron interacts quadratically
with a fictitious particle with conjugate coordinates (R;, P;) of mass M and oscillator
strength «. Each of the electrons interact with the fictitious particle (phonon cloud) of the
other electron with oscillator strength «’. For the case of harmonic phonons, as is usually
assumed in polaron physics, the polarization clouds of overlapping polarons are additive
and as a consequence there is no direct interaction between the fictitious pamcles (R, H2).

The Coulomb repulsion between the electrons is approximated by a quadratic repulsion with
strength K. Consequently, the model is determined by the four parameters M, &, «, and K.
which is illustrated in figure 1. In this quadratic model the motion along the magnetic field
does not couple with the motion perpendicular to the magnetic field. For motion along the
magnetic field, the problem is equivalent to the one-dimensional (ID) Feynman bipolaron
model Hamiltonian in the absence of any magnetic field which was diagonalized in [6].
Therefore we limit ourselves to the electron motion perpendicular to the magnetic field.

m %e’? ................... _K ............. % m
J=

Figure 1. Graphical representation of the bipolaron model.

3. The eigenfrequencies

From now on we will use units such that i = m = wro = 1. The Hamiltonian Hg in
two dimensions (2D) has sixteen degrees of freedom, and its diagonalization is equivalent
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to the diagonalization of a4 16 x 16 matrix. An alternative approach [11] is to consider the
equations of motion

. i d Hg _ dHg
p.l = a,rj i aRj (7&)
. aHF BHF

L= R tain 7b
1= % ) o

which leads to a set of sixteen linear first-order differential equations. The solution of this
set of equations is rather lengthy. Therefore only a brief outline of the calculation will
be given. After eliminating the momentum variables the sixteen coupled first-order linear
differential equations reduce to eight coupled second-order linear differential equations.
Taking the Laplace transform of these equations results in eight coupled non-homogeneous
algebraic equations, which in principle can be solved analytically. The eigenfrequencies of
the system are given by the zeros of the determinant of the homogeneous problem

s +n  sw ¥ 0 —¥1 0 -1 0
—sw. s247 0 V3 0 =¥ 0 -2
¥ 0 st47y so:  —n 0 -y 0
0 3 —Siw, S°4+7 0 - 0 -1
detA=| 5 0 -8 0 st+r O 0 0 ®
0 -8 0 -8 0 s*4e 0 0
-5 0 =31 0 0 0 s4+r 0
0 —52 0 =& 0 0 0 s+z

where n =y +m—y 1 =k/m w=u«/m y=K/m){ =248 @& =u«/M,
8 = «'/M) and o, = eB/mc is the cyclotron frequency of a free electron in a magnetic
field. In equation (8) ‘s’ is the Laplace variable and the condition det A(s?) = 0 results in
the algebraic equation

2 {—52(52 — v+ mg(sz _ vz}z}

x [[s% 4 (213 — v)s? + 0* — 250 — 2025 — vD)?) =0 (9)
which leads to the set of eight eigenfrequencies: w; = /5, j=1,...,7and wg = 0. In

equation (9) we defined v2 = y) + 2 + 81 + 8 = (kK + 1)/, v* = 81+ 8 = (x + ')/ M,
and g* = 2(1182 + 1281) = 4w’ (M), where ' =m™ + ML

The polaron limit is obtained by decoupling the two electrons from each other, ie.
x = k&’ = 0 or equivalently by substituting 35 = y; = 2 = 0 in equation (9). This results
in the equation

s =y~ )~ w(s* — 8 =0 (10)

for the eigenfrequencies which was first obtained in [11]. Next we consider the zero-
magretic field Himit of equation (9) and find

s? [ =s*(s* — B HIs* + @y — v)s” + ot = 20" ] = 0 (11)

which results in the four eigenfrequencies: s = 0 and
Mim
2 _ N 2
@ = T+ ) = v, (120)
1 2K M 2kKTP 4 v
—m

Us=5 U E [[ et =2 e -”’Jz} (125)

as obtained in [6].
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Figure 2. The cigénfrequencies of the bipolaron model for the parameters: x = 0.269,
¥ = 0154, K = 0 and M = 0.369 as a function of the magnetic field. We also show
w = eB/mc and of = w,/(m + M) by the dotted lines.

Equation (9} was solved numerically. In figure 2 the eigenfrequencies w; are depicted
as a function of the magnetic field for ¥ = 0.269, ¢’ = 0.154, X = 0 and M = 0.369,
which are the parameters for a weak coupling polaron in the absence of any Coulomb
repulsion. The Feynman parameters for this case are v = [(x + &")(1 + 1/M)]"/? = 1.25
and w = [(x + «")/M]/? = 1.07. The equivalent results for a strongly coupled polaron
are shown in figure 3. We took the following parameters: « = 269.68, &' = 154.32,
K = 0 and for the mass of the fictitious particle M = 369.01 which are the parameters
obtained in [6] for ¢ = 12 in the absence of an external magnetic field. The corresponding
one-polaron Feynman parameters are v = 20.61 and w = 1.07. The discussion of the
physical significance of the different roots will be given while discussing the different
limiting behaviours.

In the following we will derive explicit analytic results for the eigenfrequencies, for
a restrictive range of w.-values. We consider X = 0, in order to make the expressions
sufficiently attractive. First, we will analyse the small magnetic field litait w; < 1 where
we obtained the following results

2 _ 32 3 4_5 2,2 2 4
o =t — 2 —— g2 4 L2 L T2 5+ 0(w)), (13a)
v* — v vt =3t +20%? L, vt —vD) s
w3 =vE -+ B 0 £ ———s w, + O (w]), (13b)
Q, )
wis =t we+0 (02, (13¢)
T I —agt (w)
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Figure 3. (a) The eigenfrequencies wy 3,467, and (b) the eigenfrequencies w2,3,4,5, as a function
of the magnetic field for: x = 269.68, &’ = 15432, K = 0 and M = 369.01 which corresponds
to the strongly coupled bipolaron systern.

Q-
N Wy
where @ = wv?/v? = wem/(m + M) is the cyclotron frequency for a particle with mass
m + M which is equal to the polaron mass, 9%,3 = (v £ /v* — 4p*)/2 is the square of the
frequencies given by equation (125) for £ =0, and 2 = v2(v? —v?)? £ /vt — 4% (v -
12)? — g*1+0*(4v* — v?). The above limiting behaviour is clearly apparent in figures 2 and
3. w is the cyclotron motion of a polaron (= electron + fictitious particle) with mass m+M
in a magnetic field, or in the present case of a bipolaron with charge 2¢ and mass 2(m+ M).

wg1 = w, + 0 (&), (13d)
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At zero magnetic field, wy and ws become equal to the frequency v for relative motion of
the electrons and the fictitious particles in the Feynman polaron model which for non-zero
magnetic field splits into two, for clockwise and counter clockwise rotational motion. The
frequencies wa 5 and wg 7 are pure bipolaron modes which equals equation (126} in the zero
magnetic field limit. These internal vibrational modes of the bipolaron split into two when
w, 7 0 for the same reason as mentioned for wo 3.

For large magnetic fields @. 3> I one finds the following asymptotic expansions

V=2 U vt =t 50t 1 1
= — —+0|— 4.
w2 v 2 Be 3v wcz‘l‘ ((Dg) (1 a)
w3 = 0o+ (WP = V) — (20 = BT u4)-1—3 ++0 (“1?) (146)
[ 1073 Wy
vi=v  p*\ 1
s =v: (5 “5)
20,4 1 Gyt 2 404 _ 3yt 3t
iv(v +5v) + 200 (e* — 3vH) (v 3p)_q1_+0 L) (140)
_ Byl w? w3
2 g1 4 2.2 4, 4y L !
s = we+ (U — v)— — 2 =3+t + o)< + 0 — (14d)
We @y e
4 84 _ 12,2 12054 _ ,22)2
o* 1 et —vv) I p(e" —vvi)* | 1
==— — - : — —1. 4
“e= Cr)c+ vE w? 2v12 m§+o @l (14¢)

Two of the frequencies (w3 and ws) reache the free electron cyclotron frequency () from
above when w,; — oo. In this limit the electrons move so fast that the fictitious particles
cannot follow the electron motion and the eigenmode of a free electron in a magnetic
field is recovered. . Several of the other eigenfrequencies, i.e. w); and @47, approach
v = J/{k +«")/M which is the eigenfrequency of the fictitious particle connected to a
fixed electron. i.e. m — 00. weg is the frequency of a particle moving counter clockwise in
a magnetic field, which is similar to the behaviour of skipping orbits in a quantum dot.

4. The eigenvectors

In the process of diagonalization equation (6), two canonically conjugate constants of motion
enter -

1 1 1
M= 700 +x) — o (P1y + poyd = i‘w“:(Ply + Pay), : (15a)
1 1 1
==+ )+ —P1e + pa) + (Pry + Py), (158)
4 2, 2ew,
which satisfy the commutation relation [Ty, T3] = —i/2w,. They are related to the paosition

of the classical orbit center. The explicit time evolution of the electron position coordinates
are found to be

7
n( =+ di(Ce™ + Cle™™), (162)
i=1
7 . .
y@y=M =iy di(Cie™ +Cle ") (166)

=1
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where C;, (Cj) are annihilation (creation) operators for quantized motion of the internal
degrees of freedom and which satisfy [C;, C',1 1= §;;. Similar expressions are obtained for
the coordinates of the second electron.
For the actual path-integral calculation [6] of the bipolaron energy at zero magnetic
field with the trial action obtained from the model Hamiltonian (6), it turned out that taking
K = 0 does not alter the results appreciably. Therefore, in the following we will take
K =0 in order to keep the formulas tractable. The coefficients d; are given by
5 SJg +a|sf+agsf+a3s}+a4
5 4Sj(35‘? -+ ass} o= ‘16)2

with

ap = =202+ M)*

az = (6 +7TM + M*W* + Mowiv?

a3 = —4(1 + MY*® ~ 2MwPv?

as = (14 3M +3M° — M08 + Mul®

as = —4(1 + MW" — 207

as = (1 — M)v* + 202°

j=1,...,3 {17a)

and
P Ms}® = 2M(2 + M)V?s]° + bus} + bas} + bas -+ bas] + bs PP
i 45;M(—4s8 + bes} + bys? + bg)? e
(17b)
with

by = Mg* + M6+ M + M*W* + M*vw?
by = 2M(w? ~ 2MvH)o* — 4(1 + 2M% + M30® — 2M2 v w?
by = —(3M* + 8M + 26)0% /8 + (M(5 + TM — 4M*W* + SMv*e? + 13/4)0*
+M2(3 + M2+ 3M3 0 + Miw?y®
by = —Mo*v* (Mo + 4v20?)
bs = M3 4 Mp¥(Mv* — oY
bg = 6(1 + M)V + 30?
by = —4p* —2M Q2 + Mp* — 4ie?
by = 2Mp*v® + v*,
For future purposes we give the limiting behaviour of these coefficients d; for w; < 1 and

&, — O
In the small magnetic field limit the coefficients d; are given by

(sjz — A + Mv*

d* = 0 (? i=1,...,3 18
J 4%(35.1_2 —_ U2)2 + (wc) J ( a)
(52 —v1)2 + MM — g%
dr = 0 (w? i=4,...,7. 186
f 65,2 — o2 @) (186)

In the asymptotic limit of large magnetic fields the expansion coefficients d; are given
by

My? 1 1
2 .
2. . —_— =1,...,3
d.r 165 §+O( :) J (192
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2,28 6 4 2
po MV tasitostosita 1 (1) =47 (198)

S ds.(35% — 41252 1 )2 2 o
4s5;(35; —4v sj-l-v) w2 w?

with £ = ~2(Mv* + %), c3 = MVY(Mv* + 50%), c5 = —4o*v?, and cg = Mp*Vo.

5. Optical absorption

In order to investigate the importance of the different eigenfrequencies to the physical
properties of the bipolaron we have calculated the velocity auto-correlation function. The
real part of the latter is a measure for the optical absorption spectrum. The oscillator strength
of the different peaks is a measure of the contribution of the different frequencies to the total
optical absorption. In fact, it was shown by Feynman et al [12] that the optical absorption
spectrum of polarons calculated within the path-integral approach of Feynman [10] consists
of two parts. The first part comes from the Feynman polaron model itself which leads to
the zeroth order approximation to the specttum. The same holds still for the present case
of bipolarons. The second part results from the difference between the bipolaron and the
trial action.

0.5 T T ; T T T

0.4

0.3

0.2

0.1

Figure 4. The oscillator strength 7; as function of the magnetic field corresponding to the weak
coupling case of figure 2.

Within linear response theory [13, 14] the velocity auto-correfation function relevant for
cyclotron resonance absorption (i.e. the Faraday active mode) is given by

2 poo .
g{w) = —% fo dz € {[(x1 (1) + 131 (D), (100) +iF1(O)]) (20)

which is the Fourier transform of the (complex) velocity auto-correlation function. For the
bipolaron model Hamiltonian in the presence of an external magnetic field we can easily
calculate this quantity by making use of the time evolution, equations (16a) and {165),
for the electron coordinates. The present model is non-dispersive and consequently the
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magneto-optical absorption spectrum consists of a series of §-functions
o(w) _ ¢
0o =

o

=) 25d%8(w - 5)) 21
Ji=1
each with an oscillator strength 7; = Zdejz. The oscillator strength satisfy the sum rule

;.;1 T; = 1. Notice that we can easily broaden these 3-functions into Lorentzians by
introducing an ad hoc broadening. This can be done by replacing w in equation (20) by
w-+il.

The oscillator strength corresponding to the different eigenmodes are depicted in figure 4
for the weak coupling case correspondig to figure 2, and in figure 5 for the strongly coupled
polaron system corresponding to figure 3. Notice that for the strong coupling case four
frequencies carry almost all the oscillator strength. The four frequencies (see figure 3(b))
are well represented by two-fold degenerate eigenfrequencies. In the strong coupling limit
the frequencies w; and ws are obtained from the first part of the RMS of equation (9) in
the limit M — co, or equivalently v — 0. This leads to

2 ) ’ )
why=vi+ % Lo fvi+ 5:—" - 202 (22)

which is valid for all @, in the region where 7; is not too small. For the corresponding
oscillator strength we obtain from equation (17a)

1 5?4 vt
T = 25;d? = —stew? d .
s i = %% (s}l(2v2 + w2} — 2u%)?
Note that in the @, — 0 limit we have s 3 = vta/2 for v = 0 which givesus T3 3 = 1/4
and which agrees with figure 5(b}.

(23}

6. Conclusion

In summary, we studied the properties of a system of two electrons interacting with each
other by the direct Coulomb force and by optical phonons in the presence of an external
magnetic field. In the present paper we limited ourselves to the study of the Feynman
bipoiaron model in which the different forces are replaced by springs and the virtual phonon
field by a fictitious particle. The resulting Hamiltonian was exactly diagonalized. The
diagonalized form is given by )

He =Y o (clcs + ) @)
=

where the different frequencies are determined by the solution of the non-linear algebraic
equation (9). The energy levels are consequently given by

7
E =) hoj(n+1) (25)
i=1

in which a bipolaron state is now characterized by the 7 discrete quantum numbers
(ny,...,n7)

After the exact diagonalization of this model bipolaron Hamiltonian we also obtained
the time evolution of the electron coordinates which is necessary in order to calculate
the electron density-density auto-correlation function. The latter is a basic quantity in the
calculation of the bipolaron thermodynamic properties and dynamical gquantities. These
calculations, within the Feynman path-integral approach, is left for future work.
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Figure 5. The oscillator strengths Ti 57 and T2 345 as function of the magnetic field for the

strong coupling case corresponding to the eigenfrequencies «; of figures 3(a) and 3(b).
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